metal complex inside their tunnels, which makes these materials a good point of departure for designing new catalysts; a stable framework after removal of the transition metal complex; and large distances between the active metal centers, which allows unhindered access of reactants to these centers through uniformly sized 8Rc channels.

Experimental Section

X-ray structure analysis of ICMM-2Cu, ICMM-2Ag, and ICMM-2H: Orthorhombic, space group Pnna, $Mo_{K\alpha}$, dimensions of crystals: $0.2 \times$ 0.1×0.05 , $0.02 \times 0.08 \times 0.2$, and $0.04 \times 0.16 \times 0.2$ mm, respectively; see Table 1 for the cell parameters. Data were collected in a Siemens SMART-CCD diffractometer using ω scans over the range $3 < \theta < 26^{\circ}$. Of 4663, 5159, and 3518 reflections, 1301, 1651, and 1187 were independent for Cu, Ag and H compounds, respectively. The structures were solved by direct methods. In the Cu and Ag compounds, all the hydrogen atoms were located in difference Fourier maps and those of the NH₄ cation refined with a model of disorder due to the special position of this N atom. Refinement was by full-matrix least-squares analysis with anisotropic thermal parameters for all non-hydrogen atoms and isotropic thermal parameters for hydrogen atoms.[27] Further details on the crystal structure investigation may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-karlsruhe.de), on quoting the depository numbers CSD-410751 (ICMM-2Cu), -410752 (ICMM-2Ag), and -410753 (ICMM-2H).

Cyclopropanation reactions: The sample of ICMM-2Cu was previously dried at 100 °C. Ethyl diazoacetate (4.11 mmol) was added dropwise over a period of 2 h in a N₂ atmosphere at 50 °C to a stirred mixture of styrene (3 mmol) and the catalyst (0.04 mmol). After the N₂ evolution had ceased, the chemical yields were determined by gas chromatography.

CAS-registry no. for ICMM-2: 9900953.

Received: March 17, 1999 [Z13179 IE] German version: Angew. Chem. 1999, 111, 2592-2595

Keywords: germanium · microporosity · solid-state structures · transition metals · zeolite analogues

- [1] "Zeolites and Related Microporous Materials": State of the Art 1994, Proceeding of the 10th International Zeolite Conference, Vol. 84 (Eds.: J. Weitkamp, H. G. Karge, H. Pfeifer, W. Hölderich), Elsevier, Amsterdam, 1994.
- [2] A. Corma, Chem. Rev. 1995, 95, 559.
- [3] G. D. Stucky, Prog. Inorg. Chem. 1992, 40.
- [4] S. J. Weigel, J.-C. Gabriel, E. Gutierrez -Puebla, A. Monge-Bravo, N. J. Henson, L. M. Bull, A. K. Cheetham, J. Am. Chem. Soc. 1996,
- [5] R. H. Jones, J. M. Thomas, R. Xu, Q. Huo, A. K. Cheetham, A. V. Powell, J. Chem. Soc. Chem. Commun. 1991, 1266.
- Q. Gao, S. Li, R. Xu, J. Chem. Soc. Chem. Commun. 1994, 1465.
- [7] M. P. Attfield, R. E. Morris, E. Gutierrez-Puebla, A. Monge-Bravo, A. K. Cheetham, J. Chem. Soc. Chem. Commun. 1995, 843.
- X. Bu, P. Feng, G. D. Stucky, Science 1997, 278, 2080.
- [9] M. A. Roberts, A. N. Fitch, J. Phys. Chem. Solids 1991, 52(10), 1209.
- [10] J. Cheng, R. Xu, G. Yang J. Chem. Soc. Chem. Commun. 1991, 1553.
- [11] S. Feng, M. Greenblatt, Chem. Mater. 1994, 4, 462.
- [12] S. Feng, M. Tsai, S. P. Szu, M. Greenblatt, Chem. Mater. 1992, 4, 468.
- [13] S. Feng, M. Tsai, M. Greenblatt, Chem. Mater. 1992, 4, 338.
- [14] R. Bialek, V. Gramlich, Z. Kristallogr. 1992, 198, 67.
- [15] M. A. Roberts, A. N. Fitch, A. V. Chadwick, J. Phys. Chem. Solids. **1995**, 56, 1353.
- [16] M. A. Roberts, A. N. Fitch, Z. Kristallogr. 1996, 211, 378.
- [17] J. Cheng, R. Xu, G. J. Yang, J. Chem. Soc. Dalton Trans. 1991, 1537.
- [18] R. Xu, S. Li, Y. Lu, G. Yang, Chem. Mater. 1992, 2, 808.

- [19] C. Cascales, E. Gutiérrez-Puebla, M. A. Monge, C. Ruiz-Valero, Angew. Chem. 1998, 110, 135-138; Angew. Chem. Int. Ed. 1998, 37, 129 - 131.
- [20] H. Li, M. Eddaaoudi, D. A. Richardson, O. M. Yaghi, J. Am. Chem. Soc. 1998, 120, 8567.
- [21] Hailian Li, O. M. Yaghi, J. Am. Chem. Soc. 1998, 120, 10569.
- [22] T. E. Gier, X. Bu, P. Feng, G. D. Stucky, Nature 1998, 395, 154.
- [23] X. Bu, P. Feng, G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 11204.
- [24] X. Bu, P. Feng, T. E. Gier, D. Zhao, G. D. Stucky, J. Am. Chem. Soc. 1998, 120, 13389.
- [25] H. Brumer, K. Wutz, New J. Chem. 1992, 16, 57.
- [26] A. Corma, V. Fornés, S. B. Pergher, T. L. Maesennn, J. G. Buglass, Nature 1998, 396, 353.
- [27] SHELXTL, Siemens Energy & Automation Inc., Analytical Instrumentation, 1996.

Donor/Acceptor Metallocenes: A New Structure Principle in Catalyst Design**

K. Aleksander Ostoja Starzewski,* W. Mark Kelly, Andreas Stumpf, and Dieter Freitag

Dedicated to Dr. Pol Bamelis on the occasion of his 60th birthday

Soon after their discovery and structure elucidation^[1] metallocenes were being applied as well-defined organometallic species in transition metal catalyzed polymerization with alkylaluminum halide cocatalysts.^[2] However, it was only after spectacular work by Sinn, Kaminsky, Brintzinger, Ewen, and others on the increase in catalyst activity in olefin polymerization by aluminoxanes[3] and on the realization of stereospecificity in propene polymerization with homogeneous stereorigid C_2 -symmetric ansa-metallocenes^[4] that the new era of worldwide polyolefin catalyst research began. The results have an impact on a current world market of more than 170 million tonnes of polymers, of which almost half are polyolefins.^[5]

The metallocene catalysts developed up to now can be divided into two large classes: 1) unbridged and 2) covalently bridged sandwich compounds.[6]

The catalysts of the first group are highly active in the polymerization of the small ethylene molecule.^[7a] A limited


Dr. W. M. Kelly,[+] Dr. A. Stumpf, Dr. D. Freitag Bayer AG (Germany)

- [+] Current address: NOVA Chemicals (Canada)
- [**] We thank Dr. Stefan Altmann and Waltraud May for the temperature-dependent NMR investigations, Dr. Thomas Fäcke and Dietmar Wiegel for the 2D NMR investigations, and Dr. Jordi Benet-Buchholz and Dr. Axel Göhrt for the X-ray structure analysis.

^[*] Dr. Dr. habil. K. A. Ostoja Starzewski Bayer AG, Zentrale Forschung Wissenschaftliches Hauptlaboratorium D-51368 Leverkusen (Germany) Fax: (+49) 214-30-81836 E-mail: Aleksander.OstojaStarzewski.ao@bayer-ag.de

incorporation of α -olefins (propene, butene, hexene) in the production of short-chain branched low-pressure polyethylene (LLDPE) is possible. Homopolymerization of α -olefins with three or more C atoms proceeds with much lower activity and predominantly results in products of low molecular weight. Possibilities for stereocontrol in this group are insufficient.

The catalysts of the second group force and define a smaller centroid-metal-centroid angle through covalent bridging of the two rings, so that sterically demanding monomers can also be readily linked. [6] In the copolymerization, a high incorporation of comonomer is achieved with a statistical distribution (very-low-density-polyethylene (VLDPE), cycloolefin-olefin-copolymers (COC), ethene-propene-ethylidene-norbornene (EPDM)). [6c, 7d,g] Such catalysts are particularly suitable for the homopolymerization of propene, but also of higher α -olefins. Structure-optimized *ansa* compounds of specific symmetry (C_2 , C_s) allow near perfect stereocontrol for

Scheme 1. Donor/acceptor metallocenes.

isotactic and syndiotactic polypropylene (iPP and sPP, respectively). [8]

In a continuation of our investigations on ylide – nickel polymerization catalysts for linear and branched polyethylene^[11b-g] we report herein on a new class of metallocene catalysts: the donor/acceptor (D/A) metallocenes (Scheme 1). In these metallo-

cenes one π ligand of the sandwich complex bears a donor substituent with a lone pair of electrons and the other π ligand an acceptor substituent with an electron pair vacancy. In this way a strongly polarized coordinative $D^+ \! \to \! A^-$ bonding interaction results spontaneously between the two π ligands.

The rotation of the rings with respect to each other is effectively hindered and at the same time the aperture angle of the metallocene is influenced. This new structure concept in metallocene catalysis offers a wide range of additional control instruments. Thus, different donor atoms (e.g. O, N, P), different acceptor atoms (e.g. B, Al), and their respective substituents can be enlisted to optimize the catalytic behavior.

The present case is concerned with the first zirconocene with a strong coordinative $P \rightarrow B$ interaction (1). The stepwise reaction of zirconium tetrachloride with the silylated donor ligand $Me_2P(Cp)SiMe_3$ ($Cp = C_5H_4$) gives the donor half-sandwich complex $[Me_2P(Cp)ZrCl_3]$ and subsequent reaction with the silylated acceptor ligand $Cl_2B(Cp)SiMe_3^{[9]}$ gives the D/A metallocene $[\{Me_2P(Cp)\}\{Cl_2B(Cp)\}\}ZrCl_2]$ (1).

Compound **1** can be obtained in the form of needlelike crystals by recrystallization from toluene. The molecular structure in the crystal (Figure 1)^[10] shows a bis(cyclopentadienyl)zirconocene, whose rings are bridged by a $Me_2P \rightarrow BCl_2$ interaction. The P–B bond length is 198 pm and the centroid-metal-centroid angle is 127.9°. The structure has no mirror plane; it is C_1 -symmetric. The molecule is chiral in the crystalline state and exists as a pair of enantiomers.

Multinuclear NMR investigations confirm the presence of the D/A bridge also in solution. The ¹H NMR spectrum at room temperature shows a mirror symmetrical structure as

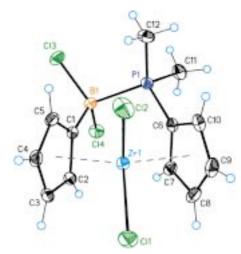


Figure 1. Molecular structure of 1 in the crystal.

the dynamic average on the NMR time scale, that is only two signals are observed for each Cp ring and only one signal for the P-bound methyl groups. In the ¹³C{¹H} NMR spectrum, the signal of the α -ring carbon atom adjacent to the fourcoordinate P atom occurs at higher field ($\delta = +104$), which is in agreement with a phosphonium cyclopentadienylide ligand. For a comparison with NMR data of free and complexed ylide ligands see references [11 a, b, d]. The ring-bridging dative P→B interaction is directly visible in the ¹¹B NMR spectrum through a well-resolved ³¹P-¹¹B coupling of 120 Hz. The low field shift of the 31P NMR signal compared to that of the silvlated donor (D) ligands and the high field shift of the ¹¹B NMR signal relative to that of the silvlated acceptor (A) ligands of about 50 ppm is in agreement with a lower electron density at the phosphorus atom and a higher electron density at the boron atom. The polar D-A bridge in the present case is thermally very stable; thus, even at 100 °C the ¹H NMR spectrum in dideuterotetrachloroethane remains unchanged with regard to the previously described qualitative appearance and the size of the ³¹P-¹H coupling.


The D/A metallocene 1 is under methylaluminoxane (MAO) activation a highly effective and thermally robust catalyst for ethene polymerization. For example, at a polymerization temperature of 100 °C and an ethene pressure of 10 bar it catalyzes the formation of high molecular weight polyethylene (PE) with a catalyst activity of about 118 tonnes PE per mol catalyst per hour.

The development potential of the class of catalysts presented here is illustrated for the polymerization of isotactic polypropylene (iPP). Whereas the production of high-melting iPP of high tacticity and high molecular mass with the existing metallocene catalysts can only be achieved if these contain synthetically demanding substitution patterns, [6, 7a, 8a,b] this goal can be readily reached with a simple bis(indenyl)zirconocene, in which the *rac* ligand arrangement is fixed by D/A interaction and remains intact under the action of the cocatalyst in the catalytic cycle: by applying *rac*-[{Et₂P(2-Me-ind)}{Cl₂B(2-Me-ind)}ZrCl₂] (2), which had been activated with triisobutylaluminum/dimethylanilinium-tetrakis(pentafluorophenyl)borate, at room temperature under 2 bar propene in toluene a highly isotactic polypropylene is

obtained with an isotacticity index of 97%, isotactic mmmmpentads of 92% (misinsertions not detected), a melting temperature $T_{\rm m}$ of 161/158°C (1st and 2nd, heating cycle, respectively) determined by differential scanning calorimetry (DSC), and an average, molecular mass M_v of 422 000 g mol⁻¹ determined by viscosimetry. For a direct comparison with other metallocene catalysts see references [7a, 8a]. For a corresponding polymerization in bulk, that is without solvent, the analytical data of the polymer increase: isotacticity index 98%, mmm-pentad probability 94%, $T_{\rm m} = 165/158$ °C and $M_{\rm v} = 2.0 \times 10^6 \, {\rm g \, mol^{-1}}$ (!). By raising the polymerization temperature to about 50°C, the molecular mass drops to about $M_v = 434\,000 \text{ g mol}^{-1}$, the isotacticity index to 92 %, and the mmmm-pentad probability to 82%. Since the melting temperature $T_{\rm m}$ (158/154 °C), however, remains high, [8a] this is an indication for the formation of atactic propylene sequences alongside long isotactic ones. Also in this case there is no evidence for misinsertions by 2,1- or 1,3-insertion.

The diverse electronic and steric possibilities of the donor and acceptor building blocks and the adjustable $D \rightarrow A$ bond strengths offer fascinating possibilites to model the architecture and property profile of the catalysts. Thus the length of the $P^+ \rightarrow B^-$ bridge of the D/A compound 1 is 198 pm and the length of the $N^+ \rightarrow B^-$ bridge in the D/A titanocene $[\{Me_2N(Cp)\}\{Me_2B(Cp)\}TiCl_2]$ (3) is 174 pm.

The catalysts presented here are prototypes of the new class of D/A metallocene catalysts. Specifically optimized substitution patterns give excellent properties for the synthesis of high melting, highly crystalline thermoplastic materials, amorphous thermoplastic materials with high glass transition temperature as well as polyolefin elastomers with low glass $T_{\rm g}$. Thus, the statistical copolymerization of ethene and propene can be achieved in every desired composition as can the insertion of bulky cycloolefins such as in ethene–propene–ethylidene–norbornene (EPDM rubbers) or in amorphous cycloolefin–olefin–copolymers (COCs). [12b-d] Furthermore, sequence polymers such as (EPDM-PE)_n are accessible, whose formation can be explained with temperature-dependent equilibria (Scheme 2). The patent for this class of catalysts has been registered worldwide. [12a]

Scheme 2. Equilibria between donor/acceptor metallocenes with bridged and unbridged structure.

Experimental Section

All reactions were carried out under strict anaerobic conditions and by using Schlenk or high-vacuum techniques. The solvents used were dry and saturated with argon. Chemical shifts δ are given relative to the relevant standard (1 H: tetramethylsilane, 11 B: boron trifluoride etherate, 13 C: tetramethylsilane, 31 P: 85% phosphoric acid). Negative signs mean a shift to higher field.

1: In a Schlenk flask trimethylsilylcyclopentadiene (0.1 mol; Fluka) was diluted with dry diethyl ether (700 mL) and cooled to $-20\,^{\circ}\text{C}$. Butyllithium (0.1 mol of a 2.5 m solution in hexane) was added dropwise to this solution and the resulting suspension was stirred at room temperature for 2 h. Subsequently, dimethylchlorophosphane (0.1 mol) in diethyl ether (50 mL) was added dropwise at $0\,^{\circ}\text{C}$ and the reaction mixture was stirred at room temperature for about 14 h, the solvent was removed under vacuum, and then the residue was taken up in hexane (200 mL). After filtration the solvent was removed under vacuum and the silylated donor ligand Me $_2P(\text{Cp})\text{SiMe}_3$ was purified by trap-to-trap distillation at 10^{-2} Torr.

A solution of the silylated donor ligand (0.07 mol) in toluene (100 mL) was added dropwise over about 3 h to a suspension of zirconium tetrachloride (0.07 mol) in toluene (200 mL) cooled to 0 °C, and the resulting yellow suspension was stirred for about 14 h at room temperature. The sparingly soluble, yellow donor half-sandwich complex was filtered off, washed with toluene, dried under vacuum (10^{-3} Torr), and treated with silylated acceptor ligands to give the D/A metallocene. For this the donor half-sandwich complex (0.01 mol) was suspended in toluene (200 mL) and $\text{Cl}_2\text{B}(\text{Cp})\text{SiMe}_3^{[9]}$ (0.01 mol) in toluene (40 mL) was slowly added dropwise at 0 °C. After the reaction had been allowed to proceed at room temperature (ca. 14 h), the mixture was filtered, the filtrate was concentrated under vacuum until the solution became turbid and then crystallized in a freezer. The D/A metallocene was obtained in the form of fine needles, which were suitable for X-ray structure analysis, by recrystallization from toluene.

X-ray structure analysis of **1**: d(P-B) = 198.25(13) pm, d(centroid-(Cp_P)-Zr) = 221.5 pm; d(Zr-centroid(Cp_B)) = 219.2 pm; angle (centroid-Zr-centroid) = 127.9°; angle (Cl-Zr-Cl) = 96.562(12)°; ${}^{31}P\{{}^{1}H\}$ NMR (162 MHz, CD₂Cl₂): $\delta = -7.7$ (m); ${}^{11}B\{{}^{1}H\}$ NMR (128 MHz, CD₂Cl₂): $\delta = -0.1$ (d, ${}^{1}J({}^{31}P,{}^{11}B) = 120$ Hz); ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CD₂Cl₂): $\delta = +8.7$ (d, ${}^{1}J({}^{31}P,{}^{13}C) = 41$ Hz, CH₃), +104.1 (d, ${}^{1}J({}^{31}P,{}^{13}C) = 66$ Hz, Cp_P-α-C), +119.4 (s, Cp_B-β-C), +120.2 (d, ${}^{2}J({}^{31}P,{}^{13}C) = 8$ Hz, Cp_P-β-C), +123.2 (d, ${}^{3}J({}^{31}P,{}^{13}C) = 7$ Hz, Cp_P-γ-C), +125.7 (s, Cp_B-γ-C); ${}^{1}H$ NMR (400 MHz, CD₂Cl₂): $\delta = +1.94$ (d, ${}^{2}J({}^{31}P,{}^{1}H) = 12.0$ Hz, CH₃), +6.56 (m, Cp_B-β-H), +6.74 (pseudo-q, 3 Hz, Cp_P-γ-H), +6.79 (pseudo-t, 3 Hz, Cp_B-γ-H), +7.01 (pseudo-q, 3 Hz, Cp_P-β-H). The assignment was based on ${}^{1}H$ -NOESY, ${}^{1}H$ - ${}^{13}C$ -HMQC, and ${}^{1}H$ - ${}^{13}C$ -HMBC-2D-NMR spectra.

2: At 0 °C a solution of *n*-butyllithium (59 mL of a 2.5 M solution in hexane) was added dropwise to a solution of 2-methylindene (0.147 mol) in diethyl ether (350 mL). The solution was allowed to warm to room temperature and stirred for 1 h. Then diethylchlorophosphane (0.147 mol) was added dropwise at 0°C, and the bright yellow suspension was stirred at room temperature for a further 1 h. After renewed cooling to 0°C, additional nbutyllithium solution (59 mL) was added dropwise, and the mixture was stirred at room temperature for about 1 h, before tributylchlorostannane (0.148 mol) was added dropwise at 0 °C. After the mixture had been stirred for about 1.5 h, the volatile components were removed under vacuum, the residue was taken up in hexane (100 mL), and precipitated lithium chloride was filtered off. After removal of the solvent, the stannylated donor ligand tributylstannyldiethylphosphanyl-2-methylindene remained as a yellow oil (yield about 80%, ³¹P NMR (CD₂Cl₂): $\delta = -36.0$). This was added to an equivalent amount of zirconium tetrachloride in dichloromethane at -30°C, and after this mixture had been stirred for 5 h at 25°C the insoluble donor half-sandwich complex 2 was obtained as a yellow powder, which was purified by Soxhlet extraction with dichloromethane. Yield

In analogy to the D/A metallocene **1** the silylated acceptor ligand trimethylsilyldichloroboranyl-2-methylindene (0.019 mol) in toluene (50 mL) was added to a suspension of the donor half-sandwich complex diethylphosphanyl-2-methylindenezirconium trichloride in toluene (350 mL). The reaction mixture was heated to 80 °C and stirred for 24 h. After cooling and filtration, hexane (300 mL) was added to the clear, orange solution. A clear yellow solution, which was decanted off from an orange-colored oil that deposited on the glass wall, was concentrated and cooled to about $-25\,^{\circ}$ C. The *rac* compound **2** formed as a bright yellow powder. 31 P{ 11 H} NMR (162 MHz, CD₂Cl₂): $\delta = +21.4$; 11 B{ 11 H} NMR (128 MHz,CD₂Cl₂): $\delta = +3.7$ (d, 1 J(31 P, 11 B) = 108 Hz); 11 H NMR (400 MHz, CD₂Cl₂): $\delta = +8.1$ (d, J=8.6 Hz, 1H), +7.96 (d, J=8.9 Hz, 1H), +7.47 to 7.05 (various overlapping multiplets, 6H), +6.53 (d, J=1.9 Hz, 1H), +6.47 (s, 1H), +3.0 to 2.55 (various overlapping multiplets, 4H), +2.21 (s, 3H), +2.08 (s, 3H), +1.44 (m, 3H), +1.07 (m, 3H).

COMMUNICATIONS

Trimethylsilyldichloroboranyl-2-methylindene: Hexane (500 mL) and butyllithium (70 mL of a 2.5 m solution in hexane) were placed in a 1000-mL flask, and 2-methylindene (0.175 mol) was added dropwise at room temperature; the mixture was stirred for about 14 h. Then trimethylsilyl chloride (0.18 mol) was added dropwise at room temperature and the mixture was stirred for a further 8 h. LiCl was filtered off, and butyllithium (70 mL of a 2.5 M solution in hexane) was added to the clear filtrate. After this mixture had been stirred for a further 14 h, trimethylsilyl chloride (0.18 mol) was added, and the resulting mixture was stirred for a further 8 h. LiCl was filtered off and the solvent was removed under vacuum. Bis(trimethylsilyl)2-methylindene remained as a colorless oil. Yield: 85%. ¹H NMR (400 MHz, CD₂Cl₂): $\delta = +7.51$ (1 H, d, J = 7.7 Hz), +7.38 (d, J =7.5 Hz, 1H), +7.19 (t, J = 7.4 Hz, 1H), +7.08 (t, J = 7.3 Hz, 1H), +3.54 (s, 1H), +2.32 (s, 3H), +0.41 (s, 9H), 0.0 (s, 9H). Bis(trimethylsilyl)-2methylindene (0.096 mol) was placed in a 250-mL Schlenk flask that was fitted with a dry ice condenser. Boron trichloride (0.096 mol) was added, and the mixture was stirred for 3 h at room temperature and a further 6 h at 55 °C. The trimethylchlorosilane formed in the reaction was removed under vacuum, leaving the crude product as a brown oil. Trap-to-trap distillation under an oil pump vacuum delivered the silylated acceptor ligand as a colorless, sticky solid. Yield about 75 % . $^{11}B\{^{1}H\}$ NMR (128 MHz, CD₂Cl₂): $\delta = +50.0$; ¹H NMR (400 MHz, CD₂Cl₂): $\delta = +8.09$ (d, J = 7.9 Hz, 1 H), +7.37 (d, J = 7.6 Hz, 1 H), +7.26 (t, J = 7.5 Hz, 1 H), +3.89 (s, 1 H), +2.61 (s, 3H), 0.0 (s, 9H).

3: A solution of dimethylboranylcyclopentadienyltitanium trichloride^[9b] (0.18 g, 0.7 mmol) in toluene (10 mL) was added at $-20\,^{\circ}$ C over 10 min to a suspension of *N,N*-dimethylaminocyclopentadienyllithium^[9c] (0.081 g, 0.7 mmol) in toluene (10 mL), resulting in a deep red solution. After the solution had been allowed to warm to room temperature over 2 h, it was filtered and the solvent was removed under vacuum. After the resulting red powder had been redissolved in warm toluene (10 mL) and insoluble material had been separated by filtration, the solution was placed in a refrigerator for about 14 h, during which time red needles formed (0.1 g) (43 % yield). ¹¹B[¹H] NMR (128 MHz, CD₂Cl₂): δ = +20.3 (br.); ¹H NMR (400 MHz, CD₂Cl₂): δ = +7.00 (t, J = 2.3 Hz, 2H), +6.47 (t, J = 2.8 Hz, 2H), +6.26 (t, J = 2.8 Hz, 2H), +2.97 (s, 6H), +0.42 (s, 6H); ¹H NMR (400 MHz, C₀D₀): δ = +6.85 (t, J = 2.3 Hz, 2H), +6.15 (t, J = 2.3 Hz, 2H), +6.10 (t, J = 2.8 Hz, 2H), +5.57 (t, J = 2.8 Hz, 2H), +1.98 (s, 6H), +0.35 (s, 6H).

Ethene polymerization: Anhydrous, argon-saturated toluene (100 mL) was placed in a vacuum-dried, oxygen-free, 300-mL-V4A steel autoclave fitted with a magnetic stirrer. The autoclave was heated to 100 °C, the catalyst was injected, and the ethylene pressure was set to 10 bar. Compound 1 (0.1 $\mu mol),$ which had been pretreated with MAO (1.0 mmol) in toluene (0.66 mL) for 1 h, was used as catalyst. The temperature inside the autoclave rose under air cooling from 100 to 105 °C. After 30 min the polymerization was stopped. After the pressure had been released from the autoclave, the reaction mixture was added to ethanol (450 mL) and concentrated aqueous HCl (50 mL) and stirred for about 14 h, the polymer was filtered off, washed thoroughly with ethanol, and dried at 100 °C in the vacuum drying cabinet until the weight remained constant. The PE vield was 5.9 g, which corresponds to a catalyst activity of about 118 tonnes of polymer per mol zirconocene per hour. The intrinsic viscosity $[\eta]$ (in *ortho*dichlorobenzene at $140\,^{\circ}\text{C}$) was $1.64\,dL\,g^{-1}$ which corresponds to an average molecular mass $M_{\rm v}$ of 106 kg mol⁻¹. The melting maximum determined by DSC was 136 °C in the 2nd heating cycle.

Propene polymerization: Anhydrous, argon-saturated toluene (100 mL) and a 1m triisobutylaluminum/toluene solution (0.5 mL) were placed in a vacuum-dried, oxygen-free, 300-mL-V4A steel autoclave fitted with a magnetic stirrer. Subsequently, **2** (1 μ mol), which had been pretreated with triisobutylaluminum (0.1 mmol of a 1m solution in toluene) for 30 min, and dimethylanilinium tetrakis(pentafluorophenyl)borate (4 μ mol) in chlorobenzene (1 mL) were injected, and the polymerization was carried out at room temperature under 2 bar propene pressure. After 30 min, the polymerization was stopped. The contents of the autoclave were placed in ethanol (450 mL) and concentrated HCl (50 mL) and the mixture was stirred for 2 h. The white polypropylene was filtered off, washed thoroughly with ethanol, and dried in the vacuum drying cabinet at about 110 °C until the weight remained constant. The iPP yield was 3.5 g, which corresponds to a catalyst activity of about 7 t polymer per mol zirconocene per hour. The intrinsic viscosity [η] (in *ortho*-dichlorobenzene at 140 °C) was

2.30 dL g⁻¹, which, according to the $[\eta]/M$ relationship for isotactic polypropylene, [9d] corresponds to an average molecular mass $M_{\rm v}$ of 422 kg mol⁻¹. The thermoanalytical investigations (DSC) were carried out in two successive measurements in the temperature range $-30\,^{\circ}{\rm C}$ to $+200\,^{\circ}{\rm C}$. For this the sample was heated at a rate of 20 K min⁻¹, then quenched at 320 K min⁻¹ to the starting temperature of the 2nd heating cycle, and then renewed at 20 K min⁻¹. The melting maxima of the 1st and 2nd heating cycles lie at 161 and 158 °C, respectively, the melting enthalpies at 108 and 90 J g⁻¹, respectively. The ¹³C NMR spectroscopic investigation of the microstructure gave an isotacticity index of 97.2 % as well as a share of isotactic *mm*-triads of 95.6 %, of atactic *mm/rm* triads of 3.2 %, and of syndiotactic *rr*-triads of 1.2 %. The share of isotactic *mmmm*-pentads was 92.2 %. The statistics from the pentad analysis confirm that the polymerization is enantiomorphic site controlled.

The 13 C NMR measurements of polypropylene at $100\,^{\circ}$ C in dideuterotetrachloroethane were recorded on a Bruker-DRX-400 spectrometer with a 5-mm-QNP-probe head with the solvent as reference (δ = 73.88).

> Received: April 1, 1999 [Z13235 IE] German version: *Angew. Chem.* **1999**, *111*, 2588–2592

Keywords: donor – acceptor systems • homogeneous catalysis • metallocenes • polymerizations

- [1] a) E. O. Fischer, Angew. Chem. 1952, 22, 620; b) G. Wilkinson, I. M. Birmingham, J. Am. Chem. Soc. 1954, 76, 4281; c) P. L. Pauson, Quart. Rev. 1955, 9, 391; d) see also Metallocenes (Eds.: A. Togni, R. L. Halterman), WILEY-VCH, Weinheim, 1998, and references therein.
- [2] a) G. Natta, P. Pino, G. Mazzanti, U. Giannini, J. Am. Chem. Soc. 1957, 79, 2975; b) D. S. Breslow, N. R. Newburg, J. Am. Chem. Soc. 1957, 79, 5072; D. S. Breslow, N. R. Newburg, J. Am. Chem. Soc. 1959, 81, 81; c) J. C. W. Chien, J. Am. Chem. Soc. 1959, 81, 86; d) W. P. Long, D. S. Breslow, J. Am. Chem. Soc. 1960, 82, 1953; e) G. Natta, I. Pasquon, A. Zambelli, J. Am. Chem. Soc. 1962, 84, 1488; f) J. C. W. Chien, J. Polym. Sci. Part A 1963, 1, 1839.
- [3] a) H. Sinn, W. Kaminsky, Adv. Organomet. Chem. 1980, 18, 99; b) H.
 Sinn, W. Kaminsky, H. J. Vollmer, R. Woldt, Angew. Chem. 1980, 92, 396; Angew. Chem. Int. Ed. Engl. 1980, 19, 390.
- [4] a) F. R. W. P. Wild, L. Zsolnai, G. Huttner, H. H. Brintzinger, J. Organometal. Chem. 1982, 232, 233; b) J. A. Ewen, J. Am. Chem. Soc. 1984, 106, 6355; c) W. Kaminsky, K. Külper, H. H. Brintzinger, F. R. W. P. Wild, Angew. Chem. 1985, 97, 507; Angew. Chem. Int. Ed. Engl. 1985, 24, 507.
- [5] a) W. Wunderlich, CHEManager 1997, 1, 6; b) W. Wunderlich, CHEManager 1998, 2, 6.
- [6] a) H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R. Waymouth, Angew. Chem. 1995, 107, 1255; Angew. Chem. Int. Ed. Engl. 1995, 34, 1143; b) P. Burger, K. Hartmann, H. H. Brintzinger, Makromol. Chem. Macromol. Symp. 1993, 66, 127; c) W. Kaminsky, J. Chem. Soc. Dalton Trans. 1998, 1413.
- [7] a) W. Kaminsky, R. Engehausen, K. Zoumis, W. Spalek, J. Rohrmann, Macromol. Chem. 1992, 193, 1643; b) N. Naga, K. Mizunuma, Polymer 1998, 39, 2703; c) H. Frauenrath, H. Keul, H. Höcker, Macromol. Rapid Commun. 1998, 19, 391; d) J. C. W. Chien, D. He, J. Polym. Sci. Part A 1991, 29, 1585; J. Polym. Sci. Part A 1998, 36, 319, and references therein; e) R. Quijada, J. Dupont, M. S. Lacerda Miranda, R. B. Scipioni, G. B. Galland, Macromol. Chem. Phys. 1995, 196, 3991; f) C. Lehtinen, P. Starck, B. Löfgren, J. Polym. Sci. Part A 1997, 35, 307; g) J. Suhm, M. J. Schneider, R. Mülhaupt, J. Mol. Catal. A 1998, 128, 215.
- [8] a) W. Spaleck, M. Antberg, J. Rohrmann, A. Winter, B. Bachmann, P. Kiprof, J. Behm, W. A. Herrmann, Angew. Chem. 1992, 104, 1373; Angew. Chem. Int. Ed. Engl. 1992, 31, 1347; b) W. Spalek, M. Antberg, M. Aulbach, B. Bachmann, V. Dolle, S. Haftka, F. Küber, J. Rohrmann, A. Winter in Ziegler Catalysts (Eds.: G. Fink, R. Mülhaupt, H. H. Brintzinger), Springer, Berlin, 1995, pp. 83–97; c) J. Ewen, M. J. Eldes in Ziegler Catalysts (Eds.: G. Fink, R. Mülhaupt, H. H. Brintzinger), Springer, Berlin, 1995, pp. 99–109; d) A. Razavi, D. Vereecke, L. Peters, K. D. Dauw, L. Nafpliotis, J. L. Atwood in

- Ziegler Catalysts (Eds.: G. Fink, R. Mülhaupt, H. H. Brintzinger), Springer, Berlin, 1995, pp. 111–147.
- [9] a) P. Jutzi, A. Seufert, J. Organometal. Chem. 1979, 169, 327; b) P. Jutzi,
 A. Seufert, J. Organometal. Chem. 1979, 169, 373; c) M. Bernheim, G.
 Boche, Angew. Chem. 1980, 92, 1043, Angew. Chem. Int. Ed. Engl.
 1980, 19, 1010; d) C. M. L. Atkinson, R. Dietz, Macromol. Chem.
 1976, 177, 213.
- [10] Crystal structure analysis of 1: Bruker-Smart-CCD area detector system, $Mo_{K\alpha}$ irradiation, graphite monochromator, Rigaku rotatinganode M18HF (operating at 50 kV, 100 mA). The reflections were recorded at 153 K on a shock-cooled crystal with the dimensions 0.4 × 0.3 × 0.3 mm³ under an inert oil (RS 3000; Riedel-de Haen) up to $2\theta_{\rm max} = 61^{\circ}$. The data were processed with the programs SAINT (data reduction, SAINT-NT V5.0) and SADABS (absorption correction). The structure solution and refinement were carried out with SHELXTL (NT-Version V5.1). $C_{12}H_{16}B_1Cl_4P_1Zr_1$, $M_r = 433.03$, monoclinic, space group $P2_1/c$, a = 14.6429(5), b = 8.3296(3), c =13.3791(5) Å, $\beta = 103.6560(10)^{\circ}$, V = 1585.71(10) Å³, $\rho_{calcd} =$ $1.814~{\rm Mg}\,{\rm m}^{-3},~\mu = 1.449~{\rm mm}^{-1},~17987~{\rm measured}~{\rm reflections},~4834$ independent ($R_{\rm int} = 0.0264$), and 4245 observed ($F_{\rm o} > 4\sigma(F_{\rm o})$). The hydrogen atoms were refined with isotropic temperature factors, all other atoms with anisotropic ones. R1 = 0.0171, wR2 = 0.0436 (all data), GOF = 1.020 for 228 parameters. Max./min. residual electron density 0.436/ - 0.305 e Å³. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC- CCDC-118714. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ ccdc.cam.ac.uk).
- [11] a) K. A. Ostoja Starzewski, H. tom Dieck, Phosphorus 1976, 6, 177;
 b) K. A. Ostoja Starzewski, J. Witte, Angew. Chem. 1985, 97, 610;
 Angew. Chem. Int. Ed. Engl. 1985, 24, 599; c) K. A. Ostoja Starzewski,
 J. Witte, Angew. Chem. 1987, 99, 76; Angew. Chem. Int. Ed. Engl. 1987, 26, 63; d) K. A. Ostoja Starzewski, J. Witte in Transition Metal Catalyzed Polymerizations—Ziegler Natta and Metathesis Polymerization (Ed.: R. P. Quirk), Cambridge University Press, Cambridge, 1988; e) K. A. Ostoja Starzewski, J. Witte, K. H. Reichert, G. Vasiliou in Transition Metals and Organometallics as Catalysts for Olefin Polymerization (Eds.: W. Kaminsky, H. Sinn), Springer, Berlin, 1988;
 f) W. C. Kaska, K. A. Ostoja Starzewski in Ylides and Imics of Phosphorus (Eds.: A. W. Johnson), Wiley, New York, 1993; g) K. A. Ostoja Starzewski in Ziegler Catalysts (Eds.: G. Fink, R. Mülhaupt, H. H. Brintzinger), Springer, Berlin, 1995, pp. 497 505, and references therein.
- [12] a) K. A. Ostoja Starzewski, W. M. Kelly, A. Stumpf (Bayer AG), WO-A 98/01455 (patent registered July 2, 1997) [Chem. Abstr. 1998, 128, 115367]; b) K. A. Ostoja Starzewski, W. M. Kelly, A. Stumpf (Bayer AG), WO-A 98/01487 (patent registered July 2, 1997) [Chem. Abstr. 1998, 128, 141901]; c) K. A. Ostoja Starzewski, W. M. Kelly, A. Stumpf (Bayer AG), PCT WO 98/01484 (patent registered July 2, 1997) [Chem. Abstr. 1998, 128, 141177]; d) K. A. Ostoja Starzewski, W. M. Kelly, A. Stumpf, unpublished results.

Macrolide Analogues of the Novel Immunosuppressant Sanglifehrin: New Application of the Ring-Closing Metathesis Reaction**

Luisa M. Martin Cabrejas, Stefan Rohrbach, Dieter Wagner, Jörg Kallen, Gerhard Zenke, and Jürgen Wagner*

More than two decades ago, the discovery of cyclosporin A (CsA) allowed a spectacular progress in the field of organ transplantation. Since then, the number of transplanted organs has grown continuously, and the search for novel immunosuppressants has been intensified. Besides its important therapeutic use, CsA has also proven to be a powerful tool for dissecting signal transduction pathways at the molecular level. It has been shown that the biological activity of CsA is mediated by an intracellular binding protein called cyclophilin (CyP). However, although CyP binding is required, it is not sufficient for the immunosuppressive activity of this drug. Full biological activity is obtained only once the CyP – CsA complex binds to and inhibits the serine/threonine phosphatase activity of calcineurin, thereby blocking the production of cytokines including interleukin-2. It

We wondered whether other ligands for cyclophilin might exist which would interfere with signaling pathways not involving calcineurin. The screening of microbial broth extracts for CyP-binding substances led to the isolation from Streptomyces flaveolus of a new class of compounds named sanglifehrins.^[5a] Among the 20 different sanglifehrins isolated so far from this strain, sanglifehrin A (SFA, Figure 1) is the most abundant component. The affinity of SFA for cyclophilin is remarkably high $(IC_{50} = 2 - 4 \text{ nm})$, [6] approximately 20-fold higher than that of CsA ($K_i = 82 \,\mathrm{nM}$). Sanglifehrin A displays potent immunosuppressive activity in the mixed lymphocyte reaction (IC₅₀ = 170 nm), an in vitro immune response assay. [5a] However, SFA does not affect T-cell receptor-mediated cytokine production, indicating a mode of action different from that of CsA. Moreover, in contrast to the T-cell-selective drug CsA, SFA inhibits mitogen-induced B-cell proliferation $(IC_{50} = 90 \text{ nm})$. These data clearly indicate that the immunosuppressant SFA acts by a new mode of action. However, the details of the mechanism by which this compound exerts its immunosuppressive activity at the molecular level are unknown.

Novartis Pharma AG

S-350.2.07

CH-4002 Basel (Switzerland)

Fax: (+41) 61-324-45-13

E-mail: juergen.wagner@pharma.novartis.com

[**] We thank Richard Sedrani for reading the manuscript, Julien France for performing the NMR measurements, and Serge Fuchs for performing the CyP-binding experiments. We are very grateful to the Novartis Kilolab Facility for the supply of multigram quantities of 3

^[*] Dr. J. Wagner, Dr. L. M. Martin Cabrejas, S. Rohrbach, D. Wagner, Dr. J. Kallen, Dr. G. Zenke

Supporting information for this article is available on the WWW under http://www.wiley-vch.de/home/angewandte/ or from the author.